Let’s talk about...

First-In-Class Laser Welding for Cylindrical Cell Batteries in High Volume Production

Join thin dissimilar metal materials in EV battery modules safely, consistently and reliably.

Challenge
Our customer’s battery module design required the joining of thin metal materials such as 300-micron thick flex bus connector to a 400-micron thick cell terminal on a 10 mm² weld area with no tolerance for over penetration. The build-up of the battery module imposed very tight restrictions on part accessibility and tooling accuracies. The customer had a high-volume part mix that required 50 welds per second and only allowed for 1 failure per 10,000 cells. Laser welding was the only technique that satisfied these requirements.

Solution
The customer asked for a safe, consistent and reliable process.

Safe: precise heat control and 24/7 operation safety
- Design of the laser process that ensured precisely controlled absorption of laser energy for a high quality joint with no risk of over penetration into the cell chemistry
- Class 1 laser welding machines with safe, reliable, light-tight enclosures

Consistent: >99.99% yield
- Integration of laser systems with the right laser process metrics (power, speed, beam positioning, etc) to ensure process consistency
- Design and build of robust tooling/fixtures
- Compensation for variances incoming product
- Integration of real-time in-process monitors with quality assurance metrics

Reliable: station operation
- Mechanical design had to be flawless and robust
- Station analytics are closed loop for intelligent feedback and real-time adjustment

Results
ATS delivered a robust high-performance laser welding process integrated into an automation solution across 8 laser cells to meet the production challenges of the project.

If you would like to contact an expert, please click here.